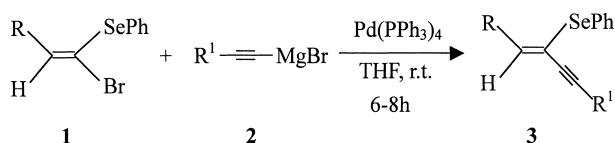


Stereoselective synthesis of 1,3-enynylselenides via palladium-catalysed cross coupling reactions[†]

Ming-Zhong Cai^{a*}, Chun-Yun Peng^a, Hong Zhao^b and Jia-Di Huang^a

^aDepartment of Chemistry, Jiangxi Normal University, Nanchang 330027, P. R. China


^bDepartment of Chemistry, Shangrao Teachers' College, Shangrao 334000, P. R. China

(*E*)- α -Bromovinylselenides undergo a cross coupling reaction with alkynyl Grignard reagents in the presence of tetrakis(triphenylphosphine)palladium(0) in THF at room temperature to afford 1,3-enynylselenides in good yields.

Keywords: 1,3-enynylselenides, palladium, cross coupling reaction

The chemistry of enynes¹ are currently attracting great interest because the conjugated enyne moiety is incorporated in a number of natural products and it can be readily converted in a stereospecific manner into the corresponding diene system.^{2,3} The chalcogen-containing enynes will also be useful as building blocks for this purpose, since a lot of useful functional group transformations can be achieved by introduction and removal of chalcogen functions. However, so far, only a few methods for the synthesis of chalcogenoenynes have been reported.⁴

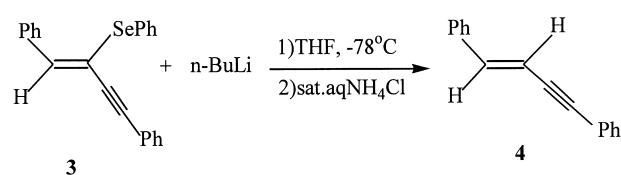
The transition metal-catalysed cross coupling reaction is a highly versatile method for carbon-carbon bond formation and has been widely used as synthetic tool.⁵ Recently, Babudri⁶ reported that the $\text{NiCl}_2(\text{dppe})$ -catalyzed cross coupling reaction of (*E*)-1-chloro-2-phenylthioethene with 2-trimethylsilyl-1-ethynyl Grignard reagent afforded (*E*)-1-phenylthio-4-trimethylsilyl-1-buten-3-yne in good yield. Ma⁷ reported the synthesis of 1,3-enynylselenides via palladium-catalysed cross coupling of (*E*)- α -selanylvinylstannanes with haloalkynes. In this paper, we report a novel stereoselective synthesis of 1,3-enynylselenides via cross coupling of (*E*)- α -bromovinylselenides with alkynyl Grignard reagents in the presence of $\text{Pd}(\text{PPh}_3)_4$ (Scheme 1).

Scheme 1

We found that when (*E*)- α -bromovinylselenides **1** were allowed to react with alkynyl Grignard reagents **2** in the presence of catalytic amounts of tetrakis(triphenylphosphine)palladium(0) in THF at room temperature for 6–8 h, 1,3-enynylselenides **3** were obtained in good yields. Some results are summarised in Table 1.

The products were identified by ¹H NMR, IR spectra and elemental analysis. The double bond geometries of the products **3** were determined by the treatment of (*Z*)-1-phenyl-2-phenylseleno-4-phenyl-1-buten-3-yne at -78°C with butyllithium in THF followed by hydrolysis with saturated aq NH_4Cl to produce (*E*)-1,4-diphenyl-1-buten-3-yne **4** (Scheme 2). The stereochemistry of product **4** was easily

established, since ¹H NMR spectrum of product **4** gives rise to two doublets at δ 6.30 and δ 7.01 with a coupling constant of 16 Hz, typical of *trans* positioned protons. The experimental results showed that the palladium-catalysed cross coupling reaction of (*E*)- α -bromovinylselenides with alkynyl Grignard reagents occurred with total retention of configuration. The required starting (*E*)- α -bromovinylselenides **1** were easily prepared in good yields with high stereoselectivity by the addition of hydrogen bromide to alkynyl selenides.⁸


In conclusion, we have developed a novel approach to the stereoselective synthesis of 1,3-enynylselenides by the cross coupling reaction of (*E*)- α -bromovinylselenides and alkynyl Grignard reagents in the presence of a palladium catalyst. The present method has the advantages of readily available starting materials, straightforward and simple procedures, mild reaction conditions and good yields.

Experimental

Tetrahydrofuran (THF) was freshly distilled from sodium-benzophenone prior to its use. IR spectra were obtained on a Shimadzu IR-435 instrument, ¹H NMR spectra were recorded on a JEOL FX-90Q (90 MHz) instrument with TMS as an internal standard in CDCl_3 as solvent and microanalyses were performed on a Vario EL and a Perkin-Elmer CHN2400.

*General procedure for the cross coupling reaction of (*E*)- α -bromovinylselenides with alkynyl Grignard reagents:* To a 0.67 M THF solution of ethylmagnesium bromide (3 ml, 2 mmol) was added terminal alkyne (2.1 mmol) in THF (1 ml) at 0°C under nitrogen. After stirring for 30 min, the mixture was stirred at 30°C for another 3 h. (*E*)- α -bromovinylselenide (1 mmol) and $\text{Pd}(\text{PPh}_3)_4$ (0.02 mmol) were then added to the resulting THF solution of alkynyl Grignard reagent and the mixture was stirred at room temperature for 6–8 h. Then a saturated aqueous NH_4Cl solution (20 ml) was added and the mixture was stirred for 10 min, and extracted with diethyl ether (2 \times 30 ml). The ethereal solution was washed with distilled water (3 \times 30 ml), dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography over silica gel (light petroleum).

*Synthesis of (*E*)-1,4-diphenyl-1-buten-3-yne (4):* To a solution of (*Z*)-1-phenyl-2-phenylseleno-4-phenyl-1-buten-3-yne **3** (0.359 g, 1.0 mmol) in THF (5.0 ml) was added n-BuLi (1.6 M hexane solution, 1.1 mmol) at -78°C . After stirring for 1 h, the mixture was hydrolysed with sat. aq NH_4Cl and extracted with Et_2O (2 \times 30 ml). The ethereal solution was washed with water (2 \times 15 ml), dried (MgSO_4) and

Scheme 2

* To receive any correspondence.

† This is a Short Paper, there is therefore no corresponding material in *J Chem. Research (M)*.

Table 1 1,3-Enynylselenides prepared

Entry	R	R ¹	Yield ^a /%	IR(neat)/cm ⁻¹	¹ H NMR(CDCl ₃), δ(J/Hz)	Elemental analysis(calcd.)	
						%C	%H
1	<i>n</i> -C ₄ H ₉	CH ₃ OCH ₂	61	3058, 2930, 2212, 1578, 1110	0.87(t,3H,J=5.3), 1.06–1.57(m,4H), 2.25–2.40(m,2H), 3.21(s,3H), 4.21(s,2H), 6.40(t,1H,J=7.4), 7.23–7.60(m,5H)	62.27(62.54)	6.30(6.51)
2	<i>n</i> -C ₄ H ₉	<i>n</i> -C ₆ H ₁₃	72	3059, 2928, 2212, 1579, 1438	0.66–1.07(m,6H), 1.10–1.61(m,12H) 2.16–2.34(m,4H), 6.49(t,1H,J=6.7), 7.16–7.61(m,5H)	69.31(69.16)	8.23(8.07)
3	<i>n</i> -C ₄ H ₉	Ph	91	3058, 2201, 1597, 1490, 1438	0.85(t,3H,J=5.4), 1.19–1.45(m,4H), 2.10–2.48(m,2H), 6.38(t,1H,J=7.5), 7.06–7.74(m,10H)	70.52(70.80)	5.75(5.90)
4	Ph	CH ₃ OCH ₂	66	3057, 2990, 2928, 2205, 1578, 1090	3.24(s,3H), 4.27(s,2H), 7.19–7.72(m,11H)	65.85(66.06)	4.67(4.89)
5	Ph	<i>n</i> -C ₆ H ₁₃	84	3060, 2924, 2199, 1579, 1493, 1456	0.88(t,3H,J=5.4), 0.89–1.31(m,8H), 1.94(t,2H,J=5.6), 7.04–7.93(m,11H)	71.69(71.93)	6.41(6.54)
6	Ph	Ph	82	3053, 2210, 1594, 1489, 1441	6.90–7.81(m,16H)	73.24(73.54)	4.30(4.46)
7	<i>n</i> -C ₆ H ₁₃	CH ₃ OCH ₂	83	3050, 2928, 2213, 1579, 1450	0.88(t,3H,J=5.4), 1.08–1.59(m,8H), 2.26–2.43(m,2H), 3.23(s,3H), 4.24(s,2H), 6.37(t,1H,J=7.4), 7.18–7.69(m,5H)	64.25(64.48)	7.23(7.16)
8	<i>n</i> -C ₆ H ₁₃	<i>n</i> -C ₆ H ₁₃	69	3058, 2929, 2211, 1578, 1438	0.66–1.06(m,6H), 1.08–1.59(m,16H), 2.10–2.36(m,4H), 6.47(t,1H,J=7.3), 7.24–7.67(m,5H)	70.23(70.40)	8.31(8.53)
9	<i>n</i> -C ₆ H ₁₃	Ph	87	3060, 2926, 2200, 1597, 1490, 1450	0.88(t,3H,J=5.4), 1.20–1.58(m,8H), 2.20–2.55(m,2H), 6.34(t,1H,J=7.5), 7.10–7.78(m,10H)	71.79(71.93)	6.44(6.54)

^aIsolated yield based on **1** used.

concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel(light petroleum) and recrystallised(EtOH) to afford enyne **4**(0.173g, 85%); M.p. 96–97°C (lit.⁹96–97°C); δ_H(CDCl₃) 6.30(d, 1H, *J*=16Hz), 7.01(d, 1H, *J*=16Hz), 7.10–7.72(m,10H).

We thank the National Natural Science Foundation of China (Project No.20062002) for financial support.

Received 1 December 2001; accepted 10 March 2002
Paper 01/1200

References

- 1 P. Magnus, A. Hirokazo and J. Harling, *J. Org. Chem.*, 1990, **55**, 1709; R. Aksela and A. C. Oehlschlager, *Tetrahedron*, 1991, **47**, 1163; S. Ikeda and Y. Sato, *J. Am. Chem. Soc.*, 1994, **116**, 5975; M. Alami, S. Gueugnot, E. Domingues and G. Linstrumelle, *Tetrahedron*, 1995, **51**, 1209; M. Yoshimatsu, M. Hayashi, G. Tanabe and O. Muraoka, *Tetrahedron Lett.*, 1996, **37**, 4161.
- 2 P.A. Magriotis and K.D. Kim, *J. Am. Chem. Soc.*, 1993, **115**, 2972.
- 3 J.A. Miller and G. Zweifel, *J. Am. Chem. Soc.*, 1983, **105**, 1383; E.J. Corey and A. Tramontano, *J. Am. Chem. Soc.*, 1984, **106**, 462.
- 4 J.P. Marino, F. Tucci and J.V. Comasseto, *Synlett*, 1993, 761; M. Koreeda and W. Yang, *Synlett*, 1994, 201.
- 5 A. Suzuki, *Pure Appl. Chem.*, 1985, **57**, 1749; T. N. Mitchell, *Synthesis*, 1992, 803.
- 6 F. Babudri, V. Fiandanese, L. Mazzone and F. Naso, *Tetrahedron Lett.*, 1994, **35**, 8847.
- 7 Y. Ma and X. Huang, *Synth. Commun.*, 1997, **27**, 3441.
- 8 J.V. Comasseto, P.H. Menezes, H.A. Stefani, G. Zeni and A.L. Braga, *Tetrahedron*, 1996, **52**, 9687.
- 9 F. Marcuzzi, U. Azzena and G. Melloni, *J. Chem. Soc., Perkin Trans. I*, 1993, 2957.